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Abstract-Buckling due to axial compression is investigated for elastic-plastic, stiffened wide panels either
continuous in the longitudinal direction over several transverse supports or finite and supported along the two
edges. An analytical treatment is given of the bifurcation behaviour and of the initial post-bifurcation
behaviour of perfect panels compressed into the plastic range. The behaviour of initially imperfect panels is
computed numerically using an incremental method. In each increment a linear problem is solved by a
combined Rayleigh Ritz-finite element method. Computed examples show a considerable imperfection­
sensitivity. both for panels that bifurcate in the plastic range, and for panels with a yield stress a little above
the elastic bifurcation stress.

L INTRODUCTION

The imperfection-sensitivity of an eccentrically stiffened elastic-plastic panel is partly due to
interaction between the wide column buckling mode and a local buckling mode. In the elastic
range the weakening effect of such mode interactions has been treated by van der Neut[l], Koiter
and Kuiken[2} and Thompson and Lewis [3] for thin-walled columns and by Tvergaard[4, 5J and
recently by other authors[6-8] for eccentrically stiffened wide panels. Graves-Smith[9J has
considered mode interaction in an elastic-plastic thin-walled box-column, while in [10] the
authors presented results for the post-bifurcation behaviour and imperfection-sensitivity of a
wide eccentrically stiffened elastic-plastic panel simply supported on the two edges on which the
compressive load acts. In [10] attention was focused on cases in which bifurcation of the perfect
structure occurred in the plastic range.

Here. we consider both panels that are simply supported on the two edges on which the
loading acts and, as is often the case in practice, panels that are continuous in the direction of
applied compressive load and supported on several transverse supports. For these two sets of
boundary conditions the bifurcation load is determined analytically and Hutchinson's asymptotic
theory of post-bifurcation behaviour in the plastic range[1l,12] is employed to obtain
approximate results for the maximum support load, for the corresponding buckling mode
deflection and for the propagation of the elastic unloading regions after bifurcation. In all
computations the stiffeners are treated.as beams so that the stiffener cross-sections do not distort.
The behaviour of panels with initial imperfections is computed numerically by a combined
Rayleigh Ritz-finite element method and a comparison is made between the numerical efficiency
of this method and a full Rayleigh Ritz calculation. Furthermore, the present paper contains some
results for the effect of plastic yielding on imperfect panels designed so that bifurcation of the
perfect structure occurs in the elastic range.
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2. PROBLEM FORMULATION

The integrally stiffened panel is assumed to be infinitely wide in the xrdirection with a constant
spacing b between the stiffeners and is under axial compression in the xI-direction (Fig. 1). The
plate thickness is h, and the eccentricity e of the stiffeners is positive in the x3-direction. The
panel is either finite in the xl-direction with the distance a between the simply supported edges as
the panel considered in [10] or it is continuous over several transverse supports at distance a
(Fig. 1).

The displacements of the plate middle surface in the XI, X2 and X3 directions are denoted UI, U2

and W, respectively. Then, with the usual assumptions of von Karman plate theory, the strain
rates of the plate middle surface e"'l3 and the bending strain rates '<"'13 are taken to be

. I (.. ..)..
€"'13 ="2 U"'.13 + UI3.'" + W.",W.{3 + W.",W.I3' K"'13 =W."'II (2.1)

where a dot denotes differentiation with respect to some monotonically increasing parameter that
characterizes the load history. The centre line strain rate and the bending strain rate of a stiffener
are taken to be

(2.2)

as in [4]. Here subscript s refers to a stiffener,but otherwise Latin indices range from 1 to 3, and
Greek indices range from 1 to 2.

A small strain theory of plasticity is used in which the three dimensional stress rates and strain
rates are assumed to be related by the equations

(2.3)

with L iJkl = L J1k1 LkliJ' The instantaneous moduli L iJkl depend on the stress history, and we
assume that they have two branches depending on whether loading or unloading occurs. In the
approximately plane state of stress in the plate only the in-plane stresses enter into the
stress-strain relations, and we can write

(2.4)

Fig. I. Part of an integrally stiffened continuous panel on several transverse supports at distance a.
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where the in-plane moduli are given by

649

(2.5)

The plate theory approximation to the strain increments at distance X3 from the middle
surface is

(2.6)

Using this and the usual definition of the membrane stress tensor N"/3 and the moment tensor
M"/3' we find the incremental relations

(2.7)

where

(2.8)

For the stiffeners we only account for plasticity due to uniaxial stresses as parallel with the
centre line. Then with the instantaneous uniaxial modulus i .. the incremental stress-strain
relationship is

as = i s1].. 1]s = €s - (X3 - e)K,. (2.9)

The incremental relations for the axial stiffener force N, and the bending moment M, are

(2.10)

where

(2.11)

Here the height and the width of the stiffener are denoted h, and b" respectively. The increment
of twisting moment in a stiffener is taken to be given by the elastic expression

MV $ = G,K,W,lZ. (2.12)

This approximation is made in order to avoid a full solution of the mixed compression-bending­
twisting problem for the stiffeners in the plastic range. This does not mean any approximation in
the case of buckling as a wide column, in which the stiffeners stay untwisted, and neither does it
affect any bifurcation load based on a flow theory of plasticity with no corners on the yield
surface. However, in computations of post-buckling behaviour or behaviour of imperfect panels,
in which the stiffeners twist, equation (2.12) overestimates the torsional stiffness somewhat.

Small-strain Jz flow-theory with isotropic hardening is used, where the Jz invariant is defined
as

(2.13)
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in terms of the stress deviator Sij == a'J - O/3)8;Jakk. The instantaneous moduli of l z flow-theory
are

where E and v are Young's modulus and Poisson's ratio, respectively, and

!
4~Z (: - 1), for l z == (lz)max and i z ~ 0

[(lz) ==

0, for l z < (lz)max or i z < o.

(2.14)

(2.15)

Here the tangent modulus E, is the slope of a stress-strain curve for uniaxial tension. The
particular uniaxial stress-strain curve chosen here is a power hardening law with a well defined
yield stress ay and continuous tangent modulus

for a"'" a,.

(2.16)

for a> avo

3. BIFURCATION BEHAVIOUR IN THE PLASTIC RANGE

The stress state in a perfect panel prior to bifurcation is a pure membrane state with the only
nonvanishing stress component being a constant axial stress at [ == Aa~ t at every point of the plate
and the stiffeners. Thus, in general the relationship between the in-plane stress rates and strain
rates stops being isotropic as soon as the absolute value of Aa~t exceeds the yield stress ay• Then
the lowest bifurcation load can be determined as that of an elastic stiffened orthotropic plate with
moduli equal to the instantaneous plastic moduli.

In the following we use the expressions E[ == £[[ 11, Ez == £222Z, E12 == £112Z, EG == £ [ZIZ and
Bs == £s for the plastic branch of the nonvanishing components of instantaneous moduli in the
prebuckling state at the bifurcation point. We also use the area As and the area moment of inertia
Is of the stiffener cross-section, and the expression D[ == Et h

3/12, Dz == Ezh 3/12, D12 == E[zh 3/12
and DG= EGh 3/6. Then by application of the equilibrium conditions for the panel in terms of N"(3,
M"(3, N., Ms and w that have been derived from the principle of virtual work[4J, we find the
following linear buckling equations for the buckling mode (u[, Uz, w) and the critical load
parameter Ac

(3.1)

(3.2)

(3.3)

and the corresponding linear discontinuity conditions at a stiffener

(3.4)
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Here superscript + refers to the side of the stiffener in the positive x2-direction and superscript ­
refers to the other side. The prebuckling unit membrane stress and stiffener force are N~I = (J~lh

and Nso = (J~IAs, respectively.
For the panel of finite length in the xI-direction the simple support boundary conditions at the

edges x I = 0, a are taken to be

UI.I = U2 = W = W,ll = O. (3.9)

Here the condition U2 = 0 gives a slight overestimation of some bifurcation loads for a panel that
is really free to slide tangentially along the simply supported edges. For the continuous panel over
several transverse supports at distance a (Fig. 1) the bifurcation load and the bifurcation mode
between two supports are identical with the solution of equations (3.1)-(3.9).

In the infinitely wide periodic structure, the buckling mode displacements UI and ware
symmetric about the centre line X2 = 0 between two stiffeners, and U2 is antisymmetric about this
line. After rather lengthy calculations we find that the solution of equations (3.1)-(3.9) take the
form

(3.10)

(3.11)

in which k is a positive integer, and the constants rl, r2, r3, r4, bl and b2depend on k, a, Ac and the
instantaneous moduli. The expressions for these parameters are lengthy and will not be given
here. In the special case of isotropy, treated in[4], r4 equals zero and the expressions (3.11) and
(3.12) are replaced by different expressions.

The same mode expressions (3.10)-(3.12) apply in the local coordinate system of a
neighbouring plate section between two stiffeners, but with different constants cs - Cg instead of
CI - C4. Substituting these buckling mode expressions in the discontinuity conditions (3.4)-(3.8),
we obtain eight linear, homogeneous equations for the constants CI - Cg. An iterative procedure is
used to determine the smallest critical bifurcation load Ac and the corresponding instantaneous
moduli, for which the determinant of the coefficient matrix vanishes.

Buckling as a wide Euler column, with k = 1 and identical modes for all plate sections
between two stiffeners, is critical as long as the stiffeners are relatively weak. When the bending
stiffness of the stiffeners is sufficiently high, local buckling of the plate between the stiffeners
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occurs first, usually with a value of k somewhat above alb. The local buckling displacement
fields in two neighbouring plate sections are usually identical with opposite sign. However, in
cases of relatively large torsional stiffness of the stringers, the mode shapes are identical for all
plate sections between two stiffeners.

For some panels specified by alb = 4, elb "" 0·1, (As + h.b )lb 2
"'" 0,0256, and with integral

stiffeners of rectangular cross-section, bifurcation loads are given in Fig. 2. The ratio
a = (1 + As Ibh )-I between the amount of material in the plate and that in the whole panel is
chosen as a design parameter. The plastic bifurcation loads are given for different ratios of yield
stress and Young's modulus, and in aU cases the strain hardening parameter n "'" 10 has been
chosen. Figure 2 also compares the bifurcation loads predicted by 12 flow theory with results of 12

deformation theory. For the wide column buckling mode these results are indistinguishable from
one another, and for the local buckling mode there is only a minor difference in our range of
interest.

4. PLASTrC POST-BIFURCATION BEHAVIOUR

An asymptotic theory of the post-bifurcation behaviour of structures in the plastic range has
been developed by Hutchinson[ll. 12J, which extends the bifurcation analysis of Hill [13, 14J into
the initial post-bifurcation range. In the vicinity of the bifurcation point the load is expanded in
terms of the buckling mode displacement amplitude, as is done in Koiter's theory for elastic
post.buckling behaviour[l5]. However, in the plastic range elastic unloading plays a crucial role
after bifurcation, In the present paper we shall use the specialization to
Donnell-Mushtari-Vlasov theory of plates and shells given in(121.

0025,----..----.,.......--..,..----,---.,....--.....,....---,.----,..-----,

CD wide calU'lln bucklmg ."ade

@ local buckling mode--z----
­0020t---.t----~----....:....:::....

r---<--------:::::::::;;;..-~~·.~.·~'X·~·:..:·""":::':.:"--cD
J)015

0005
f'lasl,c blfurcal,on 1J 2 flow theory)

ElastiC bifurcation

Plastic b,furcatlon (J 2 deformallo" lheory I

80 85 90

~:(1·~r

7570656055.50
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Fig. 2. Bifurcation stress for panels specified by alb"" 4. elb = 0,1, (A, +hb)/b'" 0·0256 and v'" 0·3, All
plastic bifurcation loads are taken for a strain hardening parameter I! = 10.



Buckling of eccentrically stiffened elastic-plastic panels 653

An asymptotically exact expression for the load parameter A in terms of the amplitude g of
the buckling mode displacement is obtained of the form

(4.1)

for g~ O. For mode displacements in the opposite direction, we change the sign of g, and then
expression (4.1) still applies with different constants AI, A2 and {3. The buckling mode is
normalized so that for g= 1 the maximum deflection W is equal to the plate thickness.

The constant A1 is determined from the Shanley condition, such that when the buckling mode
starts to grow, plastic loading occurs everywhere in the current plastic zone, except in at least one
point where neutral loading takes place. This is true in general, except for cases in which a larger
initial slope A1 would be predicted by the non-linear hypo-elastic comparison problem obtained
by neglecting the possibility of elastic unloading. The initial post-bifurcation slope for this
hype-elastic problem is given by the expression [12]

(4.2)

where for the integrally stiffened panel simply supported at the two edges XI = 0, a

(a (b (I) (I) (I) (a (I) (I) (I)

.stJ = Jo Jo 3Nall W,aW,Il dx2 dxI+ Jo 3Ns (W,IW,1

J
af.e+lh,/2) (1) ais\ (I) (I)

+ bs US -a T/sT/s dX3 dXI
o e-(hs /2) Us c

2(1) (I) JaJbflh/2) (a~"vl aiallY81 (I) (I)

+e w,12 w,ddxI+ -a' -a-- T/allT/y8
o 0 -(hI2) 1\ c Up.~ c

J
af.e+lh,m (a~sl aisl (I) (I) (I) aisl 8<¥,),\ (\))

+ bs -a' -a' T/sT/s + u s-a -a' T/s dX3 dXl.
o e-(hs /2) 1\ c 1\ c Us c 1\ c

(4.3)

(4.4)

For the continuous panel on several transverse supports the integrations must be taken over two
bays from 0 to 2a in the XI-direction. The pre-buckling solution and the buckling mode are
indicated by (0) and (1), respectively, above the quantities, and subscript c indicates a quantity
evaluated at the bifurcation point. Quantities associated with the stiffener are evaluated at
X2 = b/2. If a case is found for which Al

he > AI, equation (4.1) must be replaced by
A = Ac +Al heg +O(e), and no elastic unloading occurs immediately after bifurcation.
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The constant 13 is determined from the lowest order terms in a Taylor expansion of the shape
of the elastic unloading zone together with an asymptotic expansion of the principle of virtual
work [12]. Finally A2 is determined from the lowest order terms in this expansion of the principle
of virtual work

(4.5)

where C is a negative constant involving known quantities. In all cases we find 0 < 13 < 1, AI > 0
and A2 < O. The instantaneous elastic unloading region is denoted by Vand the equation of the
instantaneous neutral loading surface enclosing Vis given by J(~d = O. Stretched boundary-layer
coordinates ~l are chosen such that the surface (surfaces) enclosing Vare independent of ~ to
lowest order when written in terms of t-

As an example we shall give some detailed expressions for the special case of a panel on two
supports at wide column mode bifurcation in negative x3-direction, in which the wedge shape of
the neutral loading surface, shown in Fig. 3c below, differs from the shapes discussed in[12].
Here the stretched coordinates are given by the expressions

(4.6)

in terms of local Cartesian coordinates Zj centered at the surface point in which elastic unloading
starts, with Z3 directed along the outward surface normal and ZI parallel with a stiffener. For this
case J(t) takes the form

(4.7)

in which C3 is negative while the other constants are positive.
For the panel simply supported at the two edges XI = 0, a, Fig. 3 indicates the shape of the

elastic unloading zones that propagate into the material for the case of local buckling and also for
the case of wide column buckling either in the positive x3-direction or in the negative x3-direction.
Figure 3 also gives the corresponding values of 13. For the continuous panel on several transverse
supports at distance a, the shape of the elastic unloading zones at local buckling are identical with
Fig. 3a. When the continuous panel bifurcates in the wide column buckling mode the unloading
zones shown in Fig. 3b appear in half of the bays that buckle in positive x3-direction whereas no

10) J3=t

Ib) f3= ~

n

(el f3= ~

Fig. 3. Shape of elastic unloading zones in panel simply supported at the two edges (plate thickness
exaggerated). (a) Local buckling with 6 half sine waves in XI-direction. (b) Wide column buckling in positive

x,-direction. (c) Wide column buckling in negative x,·direction.
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elastic unloading occurs at bifurcation in the other half of the bays that buckle in negative
x3-direction.

Figure 4 shows the asymptotic relationship between load and mode displacement amplitude
for wide column mode bifurcation in a panel simply supported at the two edges, for wide column
mode bifurcation in a continuous panel on several transverse supports and for local mode
bifurcation in a panel with either of these two sets of boundary conditions. The design parameter
ex relates to Fig. 2. More detailed information about the constants in (4.1) are given in Table 1for
various panel designs. The table also gives the maximum load parameter Amax according to the
truncated expansion (4.1) and the corresponding mode deflection amplitude ~max, where

(4.8)

For bifurcation in the local buckling mode the plastic post-bifurcation behaviour is
symmetric, and the same is true for wide column mode bifurcation of the continuous panel. At

Table I. Constants in asymptotic expansion for various panel designs with alb = 4, elb = 0·1.
(A, +hb)1b2 =0·0256 and II =O' 3. A and B denote wide column mode bifurcation in positive and in negative
x,·direction, respectively, for panel supported on the two edges, C denotes column mode bifurcation for

continuous panel and D denotes local mode bifurcation

a O'ylE n (3 ~~X

0·650

0·525

0·700

0·640

0·650
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1
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1·044
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1·211

{

0·\73
0·0010 10 -0·\73

0·0
0·0010 10 0·0

{

0·2\2
0·0015 10 -0·2\2

0·0
0·0015 10 0·0

{

0·135
0·0010 4 -0·135

0·0

1
$3-2/5

0·745
0·186
0·745
1·008
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0·244
0·925
1·273
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0·744

1
./3-1/3

-1·291 2/5
-0,475 2/7
-1·893 2/5
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-3·242 2/5
-1·044 2/7
-4·746 2/5
-6·535 1/3
-1·036 2/5
-0'408 2/7
-1·482 2/5

1

13-1/3

1·02320
1·00064
1·00891
1·00204
1·00496
1·00014
1·00191
1·00099
1·04009
1·00139
1·01641

1

13= 2/5

0·1090
0·0155
0·0419
0·0081
0·0188
0·0026
0·0072
0·0031
0·1885
0·0318
0·0772

1

j3=2/5

A
B
C
D
A
B
C
D
A
B
C
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@~=~c+~,-e
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a
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Fig. 4. Load-mode displacement relationship. (a) Wide column buckling in panel simply supported at the two
edges. Buckling in positive x,-direction for positive ~ (a =0,65, O'ylE =0·001, n = 10). (b) Local buckling
(a = 0·525, uylE =0,001, n = 10). (c) Wide column buckling for continuous panel on several transverse

supports (a =0,65, uylE =0·001, n = 10).
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wide column mode bifurcation for a panel simply supported at the two edges the post-bifurcation
behaviour is asymmetric as shown in Fig. 4a and in Table 1. The lowest carrying capacity is for
mode displacements in the negative x3-direction contrary to the asymmetry for the linearly elastic
panel. This is due to the dominance of material nonlinearities over geometric nonlinearities in the
expressions (4.3) and (4.4) for .sti and gJ and to the relatively smaller values of both Al and f3 for
mode deflections in the negative x3-direction.

The asymptotic analysis is not used here to treat cases of two coincident plastic bifurcation
loads. However, in[lO] a numerical computation of the post-bifurcation behaviour is shown for
such a case.

Two of the most interesting results of the asymptotic post-bifurcation analysis that are
confirmed by the numerical calculations below are the strongly asymmetric behaviour at wide
column mode bifurcation for the panel on two supports, with the lowest load carrying capacity
for negative mode deflections, and the fact that the continuous panel at column mode bifurcation
has a load carrying capacity between the two extremes for the panel on two supports.

5. NUMERICAL METHOD FOR IMPERFECT PANEL

An initial imperfection is specified and the behaviour of an imperfect panel is determined by
the following incremental procedure. At each stage of the loading history, the normal deflection
W, and the membrane forces Na {3 and Ns are known. Incremental equilibrium is expressed in
terms of the following variational principle: Among all displacement increment fields that satisfy
the kinematical boundary conditions, the actual displacement increments satisfy

OJ =0

where, for the panel simply supported at the edges x I = 0, a

(5.la)

(5.lb)

For the continuous panel the integrations in equation (5.1b) must be taken over one whole period
in the XI-direction. Quantities associated with the stiffener are evaluated at X2 = b/2, f.. is the
prescribed increment of the load parameter, the moduli H~~'IB and Hs(i) are defined by (2.8) and
(2.11), respectively, and the incremental strain quantities are given in terms of the displacements
by (2.1) and (2.2).

An approximate solution of (5.1) is obtained by a combined Rayleigh Ritz-finite element
procedure due to Kawai and Ohtsubo[16, 17] and first employed in an elastic-plastic analysis by
Ohtsubo[l8]. The increment of normal displacement W, is expanded in terms of smooth functions
as in the standard Rayleigh Ritz method,

N

W = L i1w'
]=1

(5.2)
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where the Wi are the assumed functions for the Rayleigh Ritz solution. The in-plane
displacements Ila are determined by a finite element calculation. In the calculation, the plate is
divided into rectangular elements and the functions Ila are expanded in terms of cubic
"serendipity" functions[19]. Along the stiffener these functions reduce to Lagrangian cubics.

Solving first equation (5.la) for the in-plane displacements, we find a displacement field ua
1

corresponding to each Wi. In addition we use the finite element method to find two pure in-plane
modes llaN+I and Ua

N
+

2
, so that the in-plane displacement functions are given by

(5.3)

Equations (5.2) and (5.3) now give the trial functions employed in the Rayleigh Ritz procedure for
a panel.

For the numerical computation of the behaviour of continuous panels on several transverse
supports we restrict ourselves to panels in which the deformation pattern is symmetric about any
centre line Xl = (aI2) between two supports (Fig. 1), so that we need only consider the region
-(aI2) ~ Xl ~ (aI2), 0 ~ X2 ~ b. For the smooth out-of-plane functions Wi we choose the wide
column buckling mode, the local buckling mode with the smallest buckling stress corresponding
to an odd wave number k, and a mode with k = 1 that is able to relatively decrease or increase the
bulging of the plate between the stiffeners in the wide column buckling mode. Furthermore, we
choose the local buckling mode multiplied by sin (1Txlla) and the wide column buckling mode
multiplied by sin (1TX IIa) thus being able to vary the relative amounts introduced of these two
buckling modes in two neighbouring bays. In addition to these five Wi modes some others have
been tried without finding any that had an appreciable effect.

For the continuous panel the finite element computation of an in-plane displacement field ua
l

corresponding to Wi is carried out with U2J =0 at X2 =0, band u/ =0 at Xl = -(aI2), (aI2). The
additional in-plane mode a..N

+
I is computed with U2N

+
I =0 at X2 =0, b and prescribed uniform

displacements Ul N
+

1 at XI = -(aI2), (aI2). The mode Ua
N

+
2 is computed with U2N

+
2=0 at

xI=-(aI2), (aI2) and prescribed uniform displacements U2N
+
2 at x2=0,b.

For the panel on two simple supports at the edges XI = 0, a the smooth out-of-plane functions
nearly identical with the four first Wi described above and the in-plane boundary conditions are
given precisely in [10].

In the solution of the Rayleigh Ritz problem, we avoid difficulties around the maximum load
by always prescribing that of the N +3 parameters {f, {t ..., {'t+2' f.. that is numerically largest
in the previous increment, and then solving (5.1a) for the remaining N +2 parameters.

Once {1 have been determined by the Rayleigh Ritz method, corrected mode amplitude
increments {J are found by also using the curvatures of the functions ~i(A). These curvatures are
estimated numerically using the slopes of the previous increment[20]. Comparison with more
precise solutions by the Newton-Raphson method for an elastic panel [5] has demonstrated that
this quadratic incremental method is far more efficient than the straightforward linear
incremental method.

The numerical integration scheme employed in both the finite element and Rayleigh Ritz parts
of the calculations is as follows. The area integral in (5.lb) is evaluated by 16 point (4 x 4)
Gaussian quadrature in each element while the line integral along the stiffener is evaluated by 4
point Gaussian quadrature in each element. The integrals through the thickness are evaluated by
Simpsons rule, with 7 points employed in (2.8) and (2.11).

In order to evaluate (5.lb) it is necessary to know the current values of the moduli H~k1'B and
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Hs(i). Therefore, the active branches of the moduli Lf3'Y8 and is are evaluated at each integration
point. If the stress state at an integration point is on its current yield surface, the plastic branch is
taken to be active. If j2 for that integration point turns out to be negative, the elastic branch is
taken to be active in the next loading increment. This procedure is only accurate if small
increments are used and if the transition from loading to unloading, or vice versa. occurs only
once or twice during the loading history.

After experiments with various numbers of the rectangular cubic "serendipity" elements it
was found that for the panel dimensions considered a good solution is obtained by dividing the
region -(a /2) ,;; x I ,;; (a /2).0,;; Xz ,;; b for the continuous panel or the region 0,;; x I ,;; a, 0 ,;; Xz ,;; b
for the panel simply supported on the two edges into 12 elements in the xI-direction and 2
elements in the xrdirection.

The combined Rayleigh Ritz-finite element method described here differs in several respects
from that employed by Ohtsubo [18]. In the present paper the plastic strains are accounted for by
the incremental stiffness or tangent modulus method rather than by the initial strain method, and
furthermore no a priori assumption is made concerning the distribution of plastic strains through
the thickness. Also, the effect of strain hardening in included.

The computational advantage of the combined Rayleigh Ritz-finite element method versus a
full finite element calculation is that it eliminates the necessity of direct coupling of in-plane and
out-of-plane nodal degrees of freedom, thus reducing the size and the bandwidth of the finite
element equations.

In addition to the combined Rayleigh Ritz-finite element solution a few cases of a panel simply
supported at the two edges, were computed by a full Rayleigh Ritz method. Here, apart from the
bifurcation modes the in-plane trial functions taken in terms of trigonometric functions were
based on a general knowledge of the shape of the displacement fields growing with the square of
each of the two bifurcation mode amplitudes and with the product of these two amplitudes in
elastic post-buckling. To obtain the same results as with the combined method, 27 trial functions
and nearly twice the computer time were needed. Usually it is much more difficult to guess good
in-plane trial functions than it is to guess good out-of-plane trial functions, and this makes the
combined Rayleigh Ritz-finite element method very attractive.

6. BEHAVIOUR OF IMPERFECT PANELS

For some panels for which the bifurcation loads are specified in Fig. 2, the behaviour due to
various imperfections is shown in Figs. 5-11. The first four figures describe panels simply
supported on the two edges at distance a and the last three figures describe continuous panels on
several transverse supports. Initial imperfections are considered in the shape of the wide column
buckling mode and the local buckling mode, and the ratios between their amplitudes and the plate
thickness are denoted lw and ~, respectively. In the following ~w and ~l denote the additional
growth of these two modes, and in the figures we only show the relationship between ~w and the
load parameter A.

The behaviour of some simply supported panels that bifurcate in the plastic range has been
computed in [lO], and there it was found that initial imperfections lowered the maximum carrying
capacity in all cases considered. A few of these results are repeated in Fig. 5 to show the
agreement between the numerically computed asymmetric post-bifurcation behaviour and the
asymptotic results shown in Fig. 4a. The curves marked "perfect" in Figs. 5, 6, 9, 10 are actually
the results of a numerical computation for panels with very small initial imperfections. Figure 5
also shows the strong sensitivity to negative wide column imperfections, explained by the
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Fig. 5. Load vs wide column mode displacement for panel supported at the two edges that bifurcates
plastically in wide column buckling mode (uy/E = 0,001, n = 10, a = 0,65, alb = 4, elb = 0,1, (A, +hb)lb' =

0,0256, /J = O'3).
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Fig. 6. Load vs wide column mode displacement for panel supported at the two edges that bifurcates plastically
in wide column buckling mode (uy/E =0'001, n =4, a =0'65, alb =4, elb =0'1, (A, +hb)lb' = 0,0256,

/J =0·3).

asymmetric post-bifurcation behaviour, and the sensitivity to positive wide column imperfections
mainly due to interaction with the local buckling mode.

In Fig. 6 the same panel is considered with the strain hardening parameter changed to n = 4.
Here bifurcation of the perfect structure occurs at stresses somewhat higher above the yield
stress than in Fig. 5, but otherwise the behaviour exhibited in Fig. 6only differs little from that in
Fig. 5. However. at the smaller value of n the maxima occur at relatively larger mode amplitudes,
as was also predicted by-the asymptotic results in Table 1.

Figures 7 and 8 illustrate the effect of plasticity on panels on two simple supports that
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Fig. 7. Load vs wide column mode displacement for panel supported at the two edges that bifurcates
elastically in local buckling mode (eTelE = O·()()I 12, n = 10, a =0'525, alb =4, elb =0'1. (A, +hbl/b 2 =

0·0256, I' = 0,3).
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Fig. 8. Load vs wide column mode displacement for panel supported at the two edges with simultaneous
elastic bifurcation in wide column and local buckling modes (eTylE =0·()()195, eT, leT, = 0,909, n = 10,

a =0,7165, alb =4, elb = 0·1, (A, + hbllb 2 =0·0256, v = 0·3l.

bifurcate in the elastic range. For the panel in Fig. 7 that bifurcates elastically in the local
buckling mode, the elastic theory predicts a maximum carrying capacity about ]·75 times the
critical stress, occurring at a wide column mode displacement several times the plate thickness.
The figure shows that this carrying capacity is considerably reduced for various levels of yield
stress and that even for a yield stress nearly three times the bifurcation stress, the panel starts to
yield just above the bifurcation load.

The panel described in Fig. 8 is designed so that elastic bifurcation occurs simuhaneously in
the wide column buckling mode and in the local buckling mode. According to linearly elastic
theory such a design is more imperfection-sensitive than other designs due to a strong interaction
between the two critical bifurcation modes. In Fig. 8 is shown the elastic asymptotic
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Fig. 9. Load vs wide column mode displacement for continuous panel on multiple supports that bifurcates
plastically in wide column buckling mode (O',IE =0'001, n =10, a =0·65, alb =4, elb =0'1, (A, +hb)lb 2

=
0·0256, v = 0,3).
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Fig. 10. Load vs wide column mode displacement for continuous panel on multiple supports that bifurcates
plastically in wide column buckling mode (O',IE =0'001, n =4, a =0·65, alb =4, elb =0·1, (A, +hb)lb 2

=

0·0256, v = O'3).

post-bifurcation behaviour computed according to [4], for which negative growth of {w
corresponds to {, = 0 while positive growth of {w occurs simultaneously with a growth of {,. This
elastic post-bifurcation behaviour clearly indicates the sensitivity to combinations of ~w and ~

that finally result in a positive growth of {w. However, the computations with a yield stress 1·10
times the bifurcation stress show that plastic yielding makes the panel very sensitive to negative
~w, as was the case in Fig. 5. Also for the case of positive column mode displacements plasticity
adds to the imperfection-sensitivity.

For elastic continuous panels on several transverse supports Koiter and Pignataro [6] have
shown that the imperfection-sensitivity found for panels on only two supports is somewhat
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Fig. II. Load vs wide column mode displacement for continuous panel on multiple supports with
simultaneous elastic bifurcation in wide column and local buckling modes (u,/E = 0,00195, ue/u, =0·909,

n = 10, a =0·7165, alb =4, elb = 0,1, (A, +hb)lb 2 =0'0256, v = 0·3).

mitigated by the fact that half of the bays are forced in the direction in which no mode interaction
occurs. On the other hand an elastic-plastic panel on two supports is so sensitive to column mode
imperfections of both signs, that no mitigating effect is found for the elastic-plastic continuous
panel on multiple supports.

In Figs. 9-11 the behaviour is given of continuous panels corresponding to the panels in Figs.
5,6 and 8, respectively. The computations have only been carried out for positive imperfections
since the continuous panel behaves symmetrically with respect to both ~w and ~l. The numerically
computed plastic post-bifurcation behaviour shown in Figs. 9 and 10 and the asymptotic results
given in Section 4 agree in predicting that the maximum load is only slightly above the bifurcation
load, although the maximum loads and the corresponding mode deflection amplitudes (4.8)
obtained from the truncated series (4.1) are generally a little smaller and a great deal smaller,
respectively, than the numerical results. Also there is good agreement between the
asymptotically predicted shapes of the elastic unloading zones and the numerically computed
unloading zones.

A considerable imperfection-sensitivity is found both for the continuous panels in Figs. 9 and
10 that bifurcate in the plastic range and for the continuous panel in Fig. 11 that bifurcates in the
elastic range. In Fig. 9 the panel with imperfections lw =0,6, 6 =0·1 has a maximum load about
the average of the maxima corresponding to lw =±0'6, 6=0·1 in Fig. 5, and doubling the
imperfection amplitudes further diminishes the carrying capacity significantly. As was the case in
Fig. 6, the smaller strain hardening parameter n = 4 in Fig. 10 increases the bifurcation stress and
the mode amplitudes at which maxima occur, but hardly changes the imperfection-sensitivity.
The panel in Fig. 11 is considerably more imperfection-sensitive than the panels in Figs. 9 and 10.
A part of the reason for this is that the loads get closer to the elastic bifurcation load so that the
mode displacements prior to initial yielding are relatively large.

In panels simply supported on the two edges and with lw = 0 a local mode imperfection gives
a rapid growth of ~w. The same does not happen for the continuous panels on several transverse
supports as shown by the curves lw = 0,01, 6 = O·3 in Figs. 9 and 11. In fact for the continuous
panels in these two figures a case with lw = 0, 6+= 0 will have no column mode displacements
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before they are introduced at a bifurcation point somewhat below the bifurcation point for the
perfect structure.

In general these numerical examples show that the imperfection-sensitivity of integrally
stiffened elastic-plastic panels is considerable, both when they bifurcate in the plastic range and
when the yield stress is a little above the elastic bifurcation stress. For the panel over only one
bay the imperfection-sensitivity due to mode interaction is increased by plasticity, and
furthermore plasticity gives a severe sensitivity to negative column mode imperfections. These
two different causes of imperfection-sensitivity are both present in the continuous multiply
supported panel with the result that this structure is also rather imperfection-sensitive.
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